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Hidden heat transfer in equilibrium states implies directed motion in nonequilibrium states
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We study a class of heat engines including Feynman’s ratchet, which exhibits a directed motion of a particle
in nonequilibrium steady states maintained by two heat baths. We measure heat transfer from each heat bath
separately, and average them using a careful procedure that reveals the nature of the heat transfer associated
with directed steps of the particle. Remarkably we find that steps are associated with nonvanishing heat transfer
even in equilibrium, and there is a quantitative relation between this hidden heat transfer and the directed
motion of the particle. This relation is clearly understood in terms of the principle of heat transfer enhance-
ment, which is expected to apply to a large class of highly nonequilibrium systems.
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To understand universal features of various nonequilib-
rium phenomena in nature is still a wide open problem. In
spite of considerable interest and effort (see [1] and refer-
ences therein), we are still very far from obtaining a univer-
sal framework even for nonequilibrium steady states. We
thus believe it desirable to study prototypical systems that
vividly demonstrate properties that are essential to nonequi-
librium states. Heat engines including Feynman’s ratchet [2]
of Fig. 1(a), which convert thermal fluctuations into a di-
rected mechanical motion, may be such a prototypical sys-
tem. These engines have also been investigated as Brownian
motors [3]. Although the Curie principle [4] suggests that a
spatial asymmetry of the system allows a spatially asymmet-
ric motion of the particle in nonequilibrium, vivid physical
pictures of the mechanism of the engines have been missing.
The purpose of the present Rapid Communication is to de-
velop such a universal physical picture.

As is well known, Feynman'’s ratchet consists of a wheel
and a pawl attached to separate heat baths, and exhibits a
mechanical rotation [2]. Although Feynman introduced this
model to illustrate the impossibility of designing a heat en-
gine with efficiency exceeding the Carnot limit, it has been
shown that Feynman’s ratchet cannot attain the Carnot effi-
ciency [5,6]. In the present study, we focus on a more primi-
tive and hopefully fundamental aspect of the ratchet prob-
lem, namely, the direction of the rotation. Feynman designed
the ratchet so that the wheel is likely to rotate in one direc-
tion. But, as Feynman himself pointed out, the wheel can
rotate in the opposite direction, depending on the tempera-
tures of the baths [see Fig. 1(b)]. This fact indicates that the
direction of motion is a delicate issue that requires careful
consideration.

In the present work, we shall reveal that there is a precise
statistical quantity that determines the direction of the mo-
tion. Such an investigation has a practical importance in
higher-dimensional ratchetlike problems, where the preferred
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direction of the motion is far from manifest. We shall point
out a deep relation between the directed motion and “hidden
heat transfer” that takes place in the equilibrium state. Our
main conclusion is summarized in the principle of heat trans-
fer enhancement. We believe that our findings cover a large
class of heat engines, and shed light on universal features of
nonequilibrium steady states.

Feynman’s ratchets may be realized as discrete stochastic
models [7] or as continuous models described by a set of
Langevin equations [5]. We here concentrate on the latter
type. The model consists of one translational degree of free-
dom x corresponding to the angle of the wheel (in the fol-
lowing we call it the position of a particle) and other degrees
of freedom y describing the mechanical interaction between
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FIG. 1. (a) Schematic figure of Feynman’s ratchet composed of
a sawtooth-shaped ratchet wheel and a pawl. The system is attached
to two heat baths, the wheel to 7, and the pawl to T,. The tempera-
ture difference between T, and 7), produces the non\fanishing steady
rotation Jps which can be used to execute external work. The vari-
able x denotes the angle of the wheel. There are degenerate stable
positions of x corresponding to the ratchet potential wells (there are
eight in this figure). Heat flows J, and J, are defined as positive
when the system absorbs energy from each heat bath. (b) Typical
trajectories of x in a NESS. The system exhibits directed motions,
i.e., unidirectional rotations on average. The solid lines and the
broken lines show the data for the conditions 27,=7) and T,=2T,,
respectively, in model II. We clearly see that the direction of the
motion depends on the temperature difference.
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the pawl and the ratchet wheel. The degrees x and y are in
contact with heat baths with temperatures 7 and T, respec-
tively. By suitably choosing 7, and T,, we can study the
behavior of the model in equilibrium or in nonequilibrium
steady states (NESSs). The time evolution of the system is
described by the set of Langevin equations

my ==y + V2, TE(1) = JU(x.y)/ox,

—_—

myy =— 'Yyy + V"Z'nyyfy(t) —aU(x,y)/dy, (1)

where the x-asymmetric interaction potential U(x,y) has a
translational invariance in x with period [ =1." Because the
potential has stable fixed points in every period, equivalent
binding states are aligned periodically in x. 7, and v, are the
friction coefficients (here we choose y,=7v,=1) and &(1)
represent Gaussian white noises with a variance of unity. In
this Rapid Communication, we use two concrete models to
demonstrate the results numerically, but the results do not
depend on the specific models.

Model T is Sekimoto’s version of Feynman’s ratchet [5],
which is the simplest case having only two degrees of free-
dom (x and y). The potential is given by U(x,y)=exp[—y
+p(x)]+y?/2, where ¢(x) is a sawtooth-shaped periodic
function of x.” The inertia terms are neglected (m,=m,=0).

Model II has higher degrees of freedom, and was intro-
duced as a toy model for molecular motors [8—10]. The par-
ticle x and chain sites y={y,} are located on a one-
dimensional circle. The interaction potential U(x,y)
=X [v(x=y,)+u,(y;i=yis1) +us(y;—il)] is composed of three
parts, namely, an asymmetric nonlinear potential v between
the particle and the chain site, a harmonic potential u; be-
tween the neighboring chain sites, and a harmonic on-site
potential u2.3 We set m,=m,=1.

On shorter time scales, the particle (the angle of the
wheel) is mostly bound to one of the binding states of the
potential well, and from time to time exhibits sudden jumps
(steps) to neighboring binding states due to thermal activa-
tion. The probabilities of rightward and leftward steps must
be identical in equilibrium, but are in general different in
NESSs. This unbalance generates a directed motion of the
particle on longer time scales.

The thermally activated step is an elementary process of
the system. During a single step (i.e., a jump of the particle
from a binding state to a neighboring state), the system first
absorbs some amount of energy (heat) from the heat baths,
and returns it afterward. A close investigation comparing the

'"To be precise, the translational invariance means U(x+/,Rz)
=U(x,y). Here R; is the operator that translates y by [ along the
wheel. In the case of model I, R;y=y. In the case of model II,
Ry)i=yi1+1.

’Here the smooth function ¢(x)=—sin(27mx)/2—sin(4mx) /12
+1/2 is used for convenience of numerical calculations.

The magnitude of u; and u, determines the stiffness of the sys-
tem, which is a control parameter used for exploring model space.
Please refer to [8,9] for the explicit form of the potential functions
and to [10] for the method to determine the basin boundary.
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FIG. 2. Time sequences of the averaged heat flow J,(¢) over
conditioned ensembles (3.8 X 103 samples) for (a) leftward and (b)
rightward step in equilibrium (7, =7,=0.05) for model II, where the
energy barrier height is about 3.17,. For each step, time is shifted so
that the particle crosses basin boundaries at r=0. Heat transfers
Q-(r) for (c) leftward and (d) rightward steps, respectively, are ob-
tained by the integration of J«(r) from #,=-20 [see Eq. (3)].

heat transfer associated with leftward steps and that with
rightward ones will reveal the hidden heat transfer in equi-
librium.

In order to examine the heat transfers from the respective

heat baths, let us define the time-dependent heat flows J (z)

and jy(t) (energy absorbed into the system per unit time) for
each trajectory by using the stochastic energetics method
[5,11] as

A X [ 8
Jx(t) = [_ VX + Vz‘yxTxgx(t)] °X,

J(0)=[= 9y + 2% T,&,(0]°y, ()

which should be time integrated with the Stratonovich inter-
pretation.

The heat flows jx(t) and jy(t) exhibit large fluctuations
and hardly allow any physical interpretation as they are. In
order to detect the heat transfers associated with the ther-
mally activated step, we introduce a carefully conditioned
ensemble average as follows. For each step, we shift the time
variable so that at time =0 the particle moves from the basin
of a binding state to the basin of a neighboring state. Then

we perform ensemble averaging of J (1) and jy(t), separately
for rightward steps and leftward steps. The averaged quanti-
ties are denoted as Jﬁ(t), J];(t), JR(#), and J{T(t), where JE(I) is
the heat flow from T, associated with rightward steps, and so
on.

Figures 2(a) and 2(b) show these averaged heat flow pro-
files in the equilibrium state. The system absorbs energy
from the heat baths before the step (¢<<0), and dissipates it
after the step (z>0). The heat flow rapidly converges to zero
sufficiently after or before the step, and net heat flow appears
only around the step.

The heat transfer, i.e., time-integrated heat flow, is defined
as
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%1 = f t dr' ("), 3)

0

where 7,<<0 is chosen so that JN(z) is negligible for 1=t
The quantities Q;(r), Q§(t), and Q\L,(t) are defined similarly.
Figures 2(c) and 2(d) show the heat transfer in the equilib-
rium state. We here notice the significant fact that energy
absorbed from one heat bath before the step is not returned to
the same heat bath after the step. This implies that, even in
equilibrium, each step carries heat from one heat bath to the
other. Although the existence of such heat transfer may look
surprising, it does not contradict any of the thermodynamics
laws.* The nonvanishing heat transfer is observed only when
we treat rightward and leftward steps separately. The words
“hidden heat transfer” denote such heat transfer. Of course,
when averaged over all steps in both directions, there is no
heat transfer in equilibrium.

In the following, we denote by ¢°! the hidden heat transfer
from T, to T, in equilibrium associated with rightward steps.
Note that we have

g =0 () =-01(®) == Q}(»)=Qy(») (4

as is seen in Figs. 2(c) and 2(d). The nonvanishing hidden
heat transfer ¢°? in equilibrium comes from the asymmetry of
the interaction potential U(x,y) and the resulting dynamics.
Since such an asymmetry is not a special feature of the
present models but a rather generic one, we expect that simi-
lar nonvanishing hidden heat transfer in equilibrium states is
found in a wider class of systems.

The hidden heat transfer in equilibrium explored in the
above determines the direction of the particle motion in
NESSs as we shall now discuss. Let us define the response
coefficient y,, of the particle flow to the temperature differ-
ence as

Xp= lim Jo(B—AB2, B+ ABI2)/AB, (5)
AB—0

where J,,(B,, B,)=(%,) is the particle current for 7,,=1/, and
T,=1/p, (where AB=1/Ty—1/T,and 28=1/T,+1/T,). One
of course has J,(8, 8)=0. From the sign of x,, the direction
of the particle flow is specified. For example, when x,>0
right-oriented flow appears for AB>0, i.e., T,>T,.

As shown in Fig. 3, we found a remarkable relation be-
tween y,, and the hidden heat transfer ¢,

Ix
eq_ _Ap
q - D;q’ (6)

where ng is the diffusion constant of the particle in equilib-
rium states and [ is the period of the interaction potential in

x. The relation (6) not only relates the directions of particle

4C0mparing the profiles for rightward and leftward steps, we can
find that the equalities J;z(t)z—lyL(—t) ,JE(Z):—J&(—I) hold. We also
find that rightward and leftward steps occur with exactly the same
probability in equilibrium. Indeed these properties are necessary
consequences of the reversibility of equilibrium states. That we
have confirmed these properties can be regarded as a sign of reli-
ability of our numerical calculations.
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FIG. 3. Hidden heat transfer ¢* at equilibrium and /x,/Dy%
This reveals that there is a nontrivial relation (6) between the mo-
tion of the particle in NESSs and hidden heat transfer in equilib-
rium. Results for the two models, model I (filled square) at B=3
and model II (open circles) at B=20, are shown. For the latter
model, the stiffness parameter of the model is varied to explore the
model space broadly so that we have many points for the same
temperature conditions.

motion and hidden heat transfer, but shows that these two are
related in a quantitative manner. In systems of heat engines,
the directed particle flow is induced by a “field” associated
with temperature differences. Based on linear response
theory [12], the quantity x,, which is the particle flow di-
vided by a temperature gradient, is expressed in terms of a
time correlation function between the particle flow x and the

heat flow (jx—jy)/ 2 at equilibrium. Evaluating this expres-
sion under the assumption that each step occurs indepen-
dently, we can derive Eq. (6) [13].

Equation (6) implies that a step in the direction of the
particle flow enhances heat transfer from the hotter to the
colder heat bath. For example, considering the case x,>0
and T,>T,, the particle flows toward the right from the defi-
nition (5). At the same time, Eq. (6) implies ¢°4>0, which
means that rightward steps carry heat ¢*1 from 7, to T, i.e.,
from hotter to colder, while leftward steps carry the same
amount of heat in the opposite direction. We conclude that
the direction of the particle motion is chosen so as to en-
hance the heat transfer between the two baths. This principle
of heat transfer enhancement may look quite natural and rea-
sonable.

Let us proceed to the observation of heat transfer far from
equilibrium. Because there is net steady heat transfer, we
consider the excess heat transfer associated with steps in
NESSs defined as

OR (1) = f l dilJR (0 -T,]. (7)

The quantities Q)I;ex(t), Qﬁex(t), and Q% _(7) are defined simi-

) y.ex
larly. Here Jf(t) is the conditioned ensemble average of the

heat flow and the contributions from the steady heat flow, J,
and .7),, satisfying .7}:—.7)(, are subtracted; the overbar means
the long-time average. Note that we have lim,_...J%(r)=J/,,
etc.

Figure 4 shows the excess heat transfers in NESSs. Note

that, in the figure, the excess heat transfers associated with
rightward and leftward steps have the same direction,
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FIG. 4. Profile of excess heat transfer in the NESS of model II.
In the upper figures with 7,=2T,, particle flow is leftward. In the
lower figures with 27\=T,, particle flow is rightward.

namely, from the hotter bath to the colder. However, the
amounts of heat transfer are different for the rightward and
leftward steps, and we again find that the direction which
enhances the net heat transfer is selected. We conclude that
the principle of heat transfer enhancement holds also in sys-
tems far from equilibrium.
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We have investigated a class of heat engines including
Feynman’s ratchet and found a clear relation between the
directed motion in NESSs and hidden heat transfer in the
equilibrium state. The relation (6), which universally holds
for the present class, can be derived from the cross correla-
tion between the fluctuation of the heat flow and that of the
particle flow. By focusing on thermally activated steps, we
were able to characterize this correlation in terms of the hid-
den heat transfer ¢°d. The notion of the hidden heat transfer
provides us with a vivid picture for the elementary process of
the heat engine, namely, each directional step carries a heat
quantum depending on its direction. Heat transfers separately
measured for each heat bath would be useful quantities for
the investigation of other systems with multiple heat baths. It
is also interesting to explore other models of heat engine
suitable for theoretical treatments [7,14]. The fact that the
principle of heat transfer enhancement holds even in NESS
far from equilibrium suggests that there can be a universal
characterization of NESS. This remains as a future problem.
We believe that our findings offer a universal viewpoint for
studying NESS, and will lead to a better understanding of
nonequilibrium physics in general.

We are grateful to H. Tasaki for a critical reading of this
manuscript.
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